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Introduction

Goal: At design stage, incorporate changes in variable 
process inputs and uncertain parameters

Two types of unknown information:

What is not known well (uncertainty, here and now)...
Models and their parameters (kinetic and transport
coefficients,etc.)
Unmeasured and unobservable disturbances (ambient 
conditions)

What is well known but is subject to change (variability, 
wait and see)...

Feed flow rates
Process conditions and inputs
Product demands
Changes are measured (perfectly) and control
variables are used to compensate for them



Design Under Uncertainty

min E [P(d, z, y, )  s.t h(d, z, y, ) = 0]
s.t.
Pr[q(d, z, y, ) � 0, d H D, z H Z, y H Y, H 4 ] � D

y : state variables (x, T, p, etc)
d : design variables (equipment sizes, etc)
z : control/operating variables (actuators, flows, etc)

: variable inputs and uncertain parameters
(no dynamics, single stage)

h : process model equations
q : (some) process model inequalities
E[P] : expected value of an objective function
Pr[g]: probability � α for chance constraints  



Monte Carlo Models

Sampling 
over Θ

Model

z, d

y(θ)θ

min E [P(d, z, y, )  s.t h(d, z, y, ) = 0]
s.t.    Pr [q(d, z, y, ) � 0, d H D, y H Y, z H Z, H 4 ] � D

Optimizer using discrete sampling over Θ
e.g., Hammersley points



Multiperiod Models

z, d

y(θ)

min E [P(d, z, y, )  s.t h(z, y, x, ) = 0]
s.t.    Pr [g(d, z, y, ) � 0, d H D, y H Y, z H Z, H 4 ] � D

Optimizer using discrete periods over Θ
e.g., Hammersley points
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Multiperiod Models for Uncertainty

min E [P(d, z, y, )  s.t h(d, z, y, ) = 0]
s.t.    Pr [q(d, z, y, ) � 0, d H D, z H Z, y H Y, H 4 ] � D

After discretization:
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Derivation of chance constraint requires implicit 
quadrature formula that covers all periods, j.

What are the advantages of Multiperiod over Monte Carlo?



Multiperiod Models for Uncertainty:
Addition of Hard Constraints

min E [P(d, z, y, )  s.t h(d, z, y, ) = 0, g(d, z, y, ) � 0]
s.t.    Pr [q(d, z, y, ) � 0, d H D, z H Z, y H Y, H 4 ] � D

After discretization:
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Hard constraints allow no violation over ε Θ . 
Note relation to robust optimization (A. Nemirovski, Y. Zhang)

Some References: Bandoni, Romagnoli and coworkers (1993-1997), Narraway, 
Perkins and Barton (1991),  Srinivasan, Bonvin, Visser and Palanki (2002), 
Walsh and Perkins (1994, 1996)



Confidence Intervals for Uncertainty



Ellipsoidal Confidence Regions for Uncertainty



Nonlinear Confidence Regions 
for Uncertainty



Process Example (here and now)



Process Example (here and now)



Influence of distributions on profit



Addressing Variability (wait and see)

Process parameters (temperatures, pressures, etc.)
with known changes during plant operation
Changes are measured (perfectly) and control
variables are used to compensate for them (recourse)
Control variables are used to improve the results in
the design problems, can be adjusted as soon as variability 
is known
Parameters, v ε Θv, account for process variability, 
not uncertainty
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Multiperiod Models for Variability

min E [P(d, z, y, )  s.t h(d, z, y, ) = 0, g(d, z, y, ) � 0]
s.t.    Pr [q(d, z, y, ) � 0, d H D, z H Z, y H Y, H 4 ] � D

After discretization:
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Control variables offer more freedom to deal with variability
(e.g., reject disturbances) 

Some References: Grossmann and coworkers (1983-1991), Ierapetritou, 
Acevedo and Pistikopoulos (1996), Pistikopoulos and coworkers (1995-2001)



Incorporating both uncertainty and variability

Control variables:
Allowed to compensate for varying process
parameters v (e.g., measured disturbances)
Not allowed to compensate for uncertainty model
parameters, p (kinetic and transport parameters)
zk indexed by v but not by p
yik indexed by v and by p
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Multiperiod Models for Both

min E [P(d, z, y, )  s.t h(d, z, y, ) = 0, g(d, z, y, ) � 0]
s.t.    Pr [q(d, z, y, ) � 0, d H D, z H Z, y H Y, H 4 ] � D

After discretization:

Control variables offer freedom to deal with variability
(e.g., reject disturbances) but not uncertainty
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Uncertainty and Variability: Williams-Otto Process
(Rooney, B., 2003)



Williams-Otto Results



Interior Point Method
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IPOPT Algorithm

•L ine Search Strategies

• - l2 exact penalty merit function

• - augmented Lagrangian merit function

• - Filter method (adapted and extended from Fletcher and Leyffer)

•Hessian Calculation 

• - BFGS (full/LM and reduced space)

• - SR1 (full/LM and reduced space)

• - Exact full Hessian (direct)

• - Exact reduced Hessian (direct)

• - Preconditioned CG 

•Freely Available

•CPL License and COIN-OR distribution

•Solved on 1000s of test problems and applications

•Recently rewritten in C++

•Code avaliable at http://www.coin-or.org

•Algorithmic Properties

•Globally and superlinearly convergent (see Wächter, B., 2005)

•Weaker assumptions than other codes

•Easily tailored to different problem structures 



Optimality Conditions: Interior point formulation
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Newton Step for IPOPT
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Decomposition Algorithm
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Key Steps

1.

IPOPT
Line Search

& reduction of µ

2.

Computational cost is linear in number of periods
Trivial to parallelize

Evaluate functions and derivatives
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262 variables and 624 constraints (20 periods)

3020100

0

100

200

300

400

SQP (T)
MINOS(T)
MPD/SQP(T)

Periods

CPU time (s)



27

C
1

C
2

H
1

H
2

T
1

563 K

393 K

T
2

T
3

T
4

T
8

T
7

T
6

T
5

350 K

Q
c

300 K

A
1

A
3

A
2

i i

i

i

i

i

i

i i

4
A

320 K

Multiperiod Example 2 – Heat Exchanger Network
(12+3) variables and (31+6) constraints (1 period)

243 variables and 626 constraints (20 periods)

3020100

0

10

20

30

40

50

SQP (T)
MINOS (T)
MPD/SQP (T)

Periods

CPU time (s)



Hard Constraints

• Need to enforce hard constraints over 
entire domain, θ ε Θ.

• Sampling distribution to approximate E
and Pr operators is not a guarantee.

• Define T(d) � 0 to represent feasibility over 
θ ε Θ

• What does this function look like?
• How do we incorporate this into the 

algorithm? 



“Two Stage” Algorithm

• Solve multiperiod problem for θj ε Θ to yield a given design

• Attempt to ‘break’ the design with a feasibility test Æ locates a critical θ
• Add critical θ to multiperiod problem and solve again



Feasibility Tests
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Feasibility problem for variability and uncertainty (Realistic):

•Global solutions required for each operator (see Swaney and Grossmann (1985)
for properties and analysis

•Nested problems solved by writing optimality conditions at multiple levels – leads 
to difficulties for NLPs (specific convexity properties required). 

- KS function aggregation (Rooney and Biegler, 2003)
- Branch and Bound Search (Achenie and Ostrovsky, 2003)
- Global algorithms (Ierapetritou, Floudas…)



Williams-Otto Results: satisfies all feasibility tests



Future Work: Source Detection in Municipal Water 
Networks with Uncertainty

Treatment 
& Storage Consumers

• Large Area Encompassed

• Many, Many Access Points

• Vulnerable to 
• Accidental & Intentional

• Contamination



Optimization Problem
Node Concentrations & 

Injection Terms Only

Pipe Boundary 
Concentrations

Injection Terms Only

Only Constraints 
with Spatial 

Dependence



Origin Tracking Algorithm

• Known Hydraulics – Function of Time
• Pipe Network PDEs Linear in Concentration
• Pipe by Pipe PDEs

– Efficient for Large Networks
– Convert PDEs to DAEs with variable time delays

• Removes Need to Discretize in Space
• Discretization in time leads to a large QP



Municipal Source Detection Example

• Algorithm successful on over 1000 numerical tests with 
real municipal water networks

• Solution time < 2 CPU minutes for ~ 250,000 variables, 
~45,000 degrees of freedom
– Effective in a real time setting

• Formulation tool links to existing water network software
• Can impose unique solutions through an extended MIQP 

formulation (post-processing phase)
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Source Detection with Uncertainty

• Incorporate uncertain demands in diurnal hydraulics (somewhat simplistic)
• Find injection location mk(t) as “design variable”
• Formulate as multiperiod problem and apply algorithm
• Exploit properties from IPOPT and BBD decomposition
• Impose unique solutions through an extended MIQP formulation (same as 

in single scenario, same effort)
• Hard constraints (ck(t)�0) but mk(t)�0 => ck(t)�0
• No feasibility problems needed
• Other applications: robust sensor placement solved with larger MINLPs?
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Conclusions

• Combined Variability and Uncertainty
– Overdesign for uncertainty, p
– Apply (feedforward) control for variability v

• Multiperiod Problem 
– Scenarios for p and/or v considered simultaneously
– BBD structure exploited by IPOPT algorithm
– computational cost linear in scenarios (nearly perfect speedup if   

parallelized)

• Modified two-stage formulation
– Control variables indexed only for variability in multiperiod problem
– More challenging feasiblity problems
– Yields intermediate results: less conservative and not overly optimistic
– Identification of v and p and corresponding distributions is still an open   

question.


